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An analysis is presented of the process of diffusion of a multicompo- 
nent fluid through a solid porous medium. It is shown that there are 
conditions in which the diffusion fluxes vanish, and for which the 
multicomponent system may be replaced by a one-component sys- 
tem in aerodynamic problems. 

A n a l y s i s  of the flow of a s i n g l e - p h a s e  m u l t i c o m -  
ponent  fluid with the a id  of the t h e r m o d y n a m i c s  of 
i r r e v e r s i b l e  p r o c e s s e s  shows tha t  d i f fus ion,  which 
i s  an i r r e v e r s i b l e  p r o c e s s ,  is  o b s e r v e d  in the s t r e a m .  
Diffusion c a u s e s  the  p roduc t ion  of en t ropy  in the s y s -  
t em,  which m a y  be  a f lu id  only,  o r  a m i x t u r e  of a 
so l id  and a f lu id ,  a s  in the c a s e  of f low of a f lu id  
through so l id  po rous  m e d i a .  The f i r s t  kind of s y s t e m  
has  been  examined  in de ta i l  by  De G r e e t  [1], and the 
s e c o n d - - b y  the au thor ,  in [2 -4 ] .  The  au thor  a l so  
showed that  th i s  kind of a n a l y s i s  m a y  e a s i l y  b e  m o d -  
i f ied  fo r  a s y s t e m  cons i s t i ng  of only  one f lu id .  T h e r e -  
f o r e ,  in the p r e s e n t  a r t i c l e  we wil l  e x a m i n e  the flow 
of a mul t i componen t ,  s i n g l e - p h a s e  f lu id  th rough  a 
po rous  m e d i u m ,  and show that  the  concen t r a t i on  g r a -  
d i en t s  in the f luid phase  have an inf luence  on the n a -  
t u r e  of the d i f fus ion  coe f f i c i en t s .  With th is  o b j e c t i v e  
we wil l  m a k e  use  of m a t e r i a l  f r om a p r e v i o u s  a r t i c l e  
of the  a u t h o r ' s  [4]. The r e a d e r  should  r e f e r  to i t  in 
o r d e r  to b e c o m e  f a m i l i a r  with the exp lana t ion  of the 
t h e r m o d y n a m i c  s y s t e m  and the d e r i v a t i o n  of the equa-  
t ions  of cont inui ty ,  m o m e n t u m ,  ene rgy ,  en t ropy ,  and 
en t ropy  i n c r e a s e .  We wil l  employ  the s a m e  nota t ion  
in th is  a r t i c l e .  

T h e r m o d y n a m i c  s y s t e m  and en t ropy  p roduc t ion .  It 
i s  a s s u m e d  tha t  the  t h e r m o d y n a m i c  s y s t e m  c o n s i s t s  
of a s o l i d - f l u i d  m i x t u r e ,  and tha t  both p h a s e s  a r e  
found a t  a l l  po in t s  th roughout  the  e n t i r e  p o r o u s  m e -  
d ium.  The f luid phase  m a y  c o n s i s t  of n componen t s .  
I ts  vo lume  dens i ty ,  p, and the ve loc i ty  of the  c e n t e r  
of m a s s ,  V, a r e  d e t e r m i n e d  as  fo l lows :  

k ~ n  k~ t l  

k=~ p k=l p ~ '  
(1) 

where  Pk and V k a r e  the vo lume dens i t y  and the v e l o c -  
i ty,  r e s p e c t i v e l y ,  of component  k. The d i f fus ion  m k 
of componen t  k is  d e t e r m i n e d  f r o m  the e x p r e s s i o n  

mk ----- p~ (V, -- V). (2) 

F r o m  (1) and (2) we obta in  

k~n 

~=o. 
k= ! 

(3) 

The m a s s  concen t r a t i on  of componen t  k is  d e t e r -  
m i n e d  as  

Ck = Pk/P. (4) 

F o r  any ex t ens ive  p r o p e r t y  of the f lu id  phase  (or  of 
any of i t s  components ) ,  such as  en t ropy ,  we m a y  
w r i t e  

Op s ds 
- -  = p - -  - -  div (ps V), (5) 

Ot dt 

w h e r e  s is  the spec i f i c  en t ropy  of the f luid phase .  The 
to ta l  d e r i v a t i v e s  with r e s p e c t  to t ime  of the  p r o p e r t i e s  
of the  p a r a m e t e r s  of the f lu id  and  so l id  p h a s e s  a r e  
Calcula ted  a long  t h e i r  r e s p e c t i v e  v e l o c i t i e s ,  and t h e r e -  
f o r e ,  f o r  the f luid phase ,  o r  any of i t s  componen t s ,  

d 0 
--  --  q- Vgrad. (6) 

dt Ot 

Since the so l id  phase  i s  s t a t i o n a r y ,  the to ta l  and loca l  
d e r i v a t i v e s  with r e s p e c t  to t ime  wil l  b e  iden t i ca l  in 
th is  c a s e .  A s s u m i n g  tha t  t h e r e  a r e  no c h e m i c a l  r e -  
ac t ions ,  we m a y  obta in  f r o m  the f o r e g o i n g  equat ions  

dC~ -~t p ~ = p q- p V-grad C~ ----- - -d iv  mk. (7) 

The au tho r  of [4] has  shown that  in uni t  vo lume  of the  
s y s t e m ,  the r a t e  of p roduc t ion  of en t ropy  i s  

i rx-~y~ 5 F )  OVi ] 

k~-n 

q v-- grad V grad _Lr (S; 
k ~ l  

where  T i s  the  t e m p e r a t u r e ,  p i s  the v o l u m e t r i c  p r e s -  
s u r e ,  5ij is  the K r o n e c k e r  de l t a ,  F i j  i s  a componen t  
of the vo lume s t r e s s ,  q i s  the to ta l  hea t  f lux p e r  unit  
a r e a  of the s y s t e m ,  /~k i s  the c h e m i c a l  po ten t ia l  of 
component  k, and F f  i s  t h e  f r i c t i o n  f o r c e  p e r  uni t  vo l -  
ume of the s y s t e m .  B e s i d e s  i and j ,  we m a y  use  x, y ,  
z, a n d x x - - X ,  x y ~ y a n d x  z - -=z .  

I r r e / ~ e r s i b l e  changes  t ake  p l a c e  in t h e  s y s t e m  due 
to v i s c o u s  f low, hea t  conduct ion,  d i f fus ion,  and m o -  
t ion of the c e n t e r  of m a s s  of the f luid p h a s e  in t h e  
p r e s e n c e  of a f r i c t i o n  f o r c e .  The f i r s t  t e r m  is  the  
s c a l a r  p r o d u c t  of two s e c o n d - o r d e r  t e n s o r s ,  while  
the  l a s t  t h r e e  t e r m s  a r e  s c a l a r  p r o d u c t s  of f i r s t -  
o r d e r  t e n s o r s .  As  a r e s u l t  t h e r e  i s  no connect ion  b e -  
tween the f i r s t  and the o t h e r  t h r e e  t e r m s .  But  t h e r e  
m a y  b e ,  and i t  i s  a s s u m e d  tha t  t h e r e  i s ,  a connec t ion  
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between the l a s t  three  t e r m s .  If ~" is  the entropy pro-  
duction per  unit volume of the sys tem due to these 
th ree  t e rms ,  we obtain, f rom (3) and (8), 

gradTi=n- lT  ~ ( ~ )VF-- -~  o"   grad (9) 
~ 1  

where mi and gi a re ,  respec t ive ly ,  the diffusion and 
chemical  potential  of component i. 

Phenomenoiogieal  equations.  F r o m  (9) we may 
wr i te  

-q -- --L~. grad T 
T ~ 

-- grad T 
mp = --Lpu T~ 

i~ t t - -1  

i = l  

i~n--1 

i ~ l  

i=n--1 

where m p  is the diffusion of component p (p = 1, 2,3,  
. . . .  n -  1). 

The equations given above a re  cal led phenomeno- 
logical  equations, s ince they requ i re  exper imenta l  
ver i f ica t ion.  In these equations the heat flux, the dif-  
fusion, and the motion of the center  of mass  of the 
fluid phase a re  regarded  as "fluxes." It is  assumed 
that each of these fluxes is l inear ly  propor t ional  to 
the gradient  of t empera tu re ,  the gradient  of chemical  
potential ,  and to the f r ic t ion force ,  which may be 
ca l led  the " forces ."  The flux and the force  in each 
s c a l a r  product  of (9) a re  conjugate quantit ies;  fo r  
example,  the heat  flux is the conjugate of the t em-  
pe ra tu re  gradient .  The connecting coefficients  a r e  
known as the Onsager  coefficients ,  being cons idered  
as constant, and not functions of the fo rces .  If this  
is  valid,  we have 

L~. ~ L.~, Lp. = Lup ,  Lp i  = Lip , etc.  (13) 

Express ions  (13) a r e  known as the Onsager  r e c i p -  
roca l  re la t ions ,  and indicate how the var ious  phe- 
nomena a re  re la ted .  These re la t ions  wilt be used 
widely in this ana lys i s .  According to the second law 
of thermodynamics  

> 0 and r >i 0. (14) 

It may therefore  be shown that 

L..>~0, L ~ > / 0 ,  Lop > /0 ,  etc.  

L.u L ~ - -  (L.w) ~ > 0. 

L.. Lpp --  (Lap) 2 > 0,  etc.  (15) 

Using the Gibbs-Duhem equation, we may also 
show that  

l k=n--I  
+ -~- ~ 0(~i'='~n) gradCk, (16) 

k=, 0 Ca 

! 
where h i and V i a re ,  respec t ive ly ,  the pa r t i cu l a r  spe-  
cific values of the enthalpy and the in ternal  volume of 
component i, while p' is  the internal  p r e s s u r e  of the 
fluid phase.  

The author has shown [3, 4] that, for  modera te  val-  
ues of Reynolds number and negligibly smal l  g rav i ta -  
tion effects ,  

Ff = rgrad p' = grad p, (17) 

where r is the poros i ty  of the sys tem,  and p is  the 
volumetr ic  p r e s s u r e  of the fluid phase.  

Stat ionary s ta tes .  The concept of s ta t ionary  s ta tes  
was explained in detai l  by de Groot [1], and the author  
used i t  in his previous papers  [3, 4]. It is  based  on the 
hypothesis  that entropy production in the sys tem always 
at tains the l eas t  value consis tent  with the l imi t s  im-  
posed upon it.  By examining Eqs. (9)-(12), we see 
that or" may be wri t ten as a function of (n + 1) indepen- 
dent forces  or  va r i ab les .  Any of these forces  or  va r i -  
ables  may be "fixed" at  a constant value, or  left  "f ree ."  
If al l  the forces  a r e  f ree ,  there  is  no r e s t r a i n t  on the 
sys tem,  and the r e su l t  is a zero value of ~", because  
of evolution of the sys tem.  Such a state is known as a 
s ta t ionary  state of zero o rde r .  If we fix one var iab le  
and leave the remaining  n f ree ,  the quantity cr" at tains 
i ts  l e a s t  value, commensura te  with this r e s t r a in t ,  and 
we obtain as  a r e su l t  a s ta t ionary  state of the f i r s t  
o rde r .  Thus, the o r d e r  is  de termined by the number  
of fixed independent va r i ab les .  F o r  a given o r d e r  of 
s ta t ionary  state ,  the condition of l eas t  value of the 
quantity a", together  with the use  of the Onsager  r e -  
c iproca l  re la t ions ,  leads  to d i sappearance  of the 
f luxes that a r e  conjugate to the f ree  fo rces  (or v a r i -  
ables) .  F o r  example,  in a s ta t ionary  s tate  of o r d e r  
one, in which the t empera tu re  gradient  is fixed, the 
diffusion flows and the motion of the center  of mass  
of the fluid phase  vanish. 

It should be noted here  that once the val idi ty of the 
entropy production equation and of the phenomenolog- 
ical  equations is assumed,  any s ta t ionary  s tate  de-  
sc r ibed  by these  equations is  pe r m i s s i b l e .  

Ch arac ter i s t i c s  of the di f fus ion coe f f i c i ent s .  The 
Onsager  coefficients in the diffusion Eq. (11) may be 
cal led diffusion coefficients .  The nature of these co- 
efficients will be  examined f rom the viewpoint of the 
concept of s ta t ionary  s ta tes .  We will examine a s ta -  
t ionary  s tate  of o r d e r  two in which 

grad T/7 ~ = const, (18) 

Fr = const (19) 

and grad  [(~i - ~n)/Tl for  a l l  n - I components r e -  
mains  f ree .  Evolution of this s ta t ionary  s ta te  gives 

r a p = 0  ( p = l ,  2, 3 . . . . .  n ~ l ) .  (20) 

It may be seen f rom (17) and (19), that, by ass ign-  
constant F f ,  we obtain a constant ing p r e s s u r e  g r a -  

dient.  Since the veloci ty of the center  of m a s s  of the 
fluid phase is not zero ,  f rom (7) and (20) we obtain 

gradC/= 0 (i = 1, 2, 3 . . . . .  n - -  1), (21) 
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and so the  f lu id  b e h a v e s  l ike  a o n e - c o m p o n e n t  f luid.  
If we subs t i t u t e  (16), (17), (20) and (21) into (11), we 
obta in  (n - 1) d i f fus ion equa t ions ,  d e t e r m i n i n g  the 
r a t i o  of  the p r e s s u r e  and t e m p e r a t u r e  g r a d i e n t s ,  
which i s  i m p o s s i b l e ,  b e c a u s e  of the in i t i a l  condi t ions  
(18) and (19). T h e r e f o r e ,  a l l  the d i f fus ion  coe f f i c i en t s  
in the (n - 1) d i f fus ion  equat ions  m u s t  be  z e r o .  H e r e  
i t  should b e  s t r e s s e d  tha t  (21) i s  the  key equat ion  
l ead ing  to th is  conc lus ion .  If, f o r  example ,  g r a d  Ci 
~ 0  (i = 1 , 2 , 3  . . . . .  n - 1), then the va lue s  of a l l  the 
d i f fus ion  coe f f i c i en t s  could be  d e t e r m i n e d  f r o m  the 
(n - 1) d i f fus ion  equa t ions .  T h e r e f o r e ,  when (21) is  
va l id ,  we have 

Li~ = Lui = O, Li~ = Lwi = O, Lip = Lpi = O, (22) 

w h e r e  i = 1, 2, 3 . . . . .  n - 1 ano p ~- 1, 2, ~ . . . . .  
n - 1 .  

In o r d e r  to d e t e r m i n e  in g r e a t e r  de t a i l  the  depen-  
dence  of the d i f fus ion coef f i c ien t s  on the c o n c e n t r a -  
t ion g r a d i e n t s ,  we wil l  examine  a s t a t i o n a r y  s t a t e  of 
n - t h  o r d e r ,  in which 

grad T/T ~ = const, 

?'t = const, 

grad(~iT~-------~)=const ( i = 2 , 3 , 4  . . . . .  n - - l )  (23) 
f ~ 

and g r a d  (/~i - /~n)/T i s  le f t  f r e e .  In this  c a s e  t h e r e  
i s  no d i f fus ion  of the f i r s t  component .  F r o m  (11) we 
have 

m l = - - L a u  gradT 
7"" 

f2_n--I 

and Eqs .  (17) and (10) show that  the va lue  of the p r e s -  
s u r e  g r a d i e n t  is  f ixed.  Since V is  not  equal  to ze ro ,  
we obta in ,  f r o m  (7) and (24), 

grad C1 = 0. (25) 

It m a y  be  seen  f r o m  (16)-(19)  that  (23) g ives  us  
(n - 2) condi t ions  fo r  d e t e r m i n i n g  the concen t r a t i on  
g r a d i e n t s  fo r  the (n - 2) Components  of the  f lu id  phase .  
Thus,  Eqs .  (18), (19), (23) and (25) d e t e r m i n e  the va l -  
ues  of a l l  the f o r c e s  in (24). Since these  va lues  may  
be  a r b i t r a r y ,  Eq.  (24) wi l l  be  va l id  only when a l l  the 
coe f f i c i en t s  a p p e a r i n g  in i t  a r e  z e r o .  We aga in  note  
that  (25) is  the  key  equat ion l ead ing  to th is  conc lus ion .  
If g r ad  C 1 w e r e  not ze ro ,  i t s  va lue  would be  d e t e r -  
mined  f r o m  (24) in t e r m s  of the d i f fus ion  coe f f i c i en t s .  
Thus,  when g rad  C 1 equa ls  ze ro ,  

L,.  = L.I = O, Llw = L~I = O, 

L ~ = L i ~ = O  (i=1, 2, 3 . . . .  , n - - l ) .  (26) 

In a similar way it may be shown that when grad C a 
equals zero 

L~. = L~o. = O, L ~  = L ~  = O, 

Lei = Lv~ = 0 (i = I, 2, 3 . . . . .  n - -  1). (27) 

G e n e r a l i z i n g  Eqs .  (22), ( 2 6 ) a n d  (27), we ob ta in  

Lm, = L,p = O, Lpw = Lwp = O, Lpp = 0, (28) 

if g r a d  Cp = 0 (p m a y  have any of the fo l lowing va lues :  
1 , 2 , 3  . . . . .  n -  1), and 

L.i = L~p = O, (29) 

ff g r a d  Cp o r  g r a d  Ci equa l s  z e r o  (i and p equal  to any 
of the va lues  1 ,2 ,  3 . . . . .  n - 1 and i r p). 

We wil l  now e x a m i n e  the c a s e  when the  d i f fus ion  
coe f f i c i en t s  a r e  cont inuous  funct ions  of the c o n c e n t r a -  
t ion g r a d i e n t s .  To s i m p l i f y  the a n a l y s i s ,  we a s s u m e  
tha t  the f luid phase  c o n s i s t s  of two componen t s .  Then 
Eqs .  (9)- (12)  may  be  r e w r i t t e n  in the  fo l lowing f o r m :  

w h e r e  

d '  = - -  q x. - -  ml x.~ - -  ~ -F i ,  (30) 

~= --L.fi .--  L~, x~ --L.~ 8, (31) 

m, = --L, .  L - -  L,, x . , - -  L~  6 ,  (32) 

V/T = -- L~,. x-u-- L~, xm-- L ~ ?  t, (33) 

T 2 ; x~ =grad  �9 (84) 

In th is  c a s e  a s t a t i o n a r y  s t a t e  of s econd  o r d e r ,  
w h e r e  the va lues  of Xm and F f  a r e  f ixed,  whi le  the 
va lue  of Xu r e m a i n s  f r e e ,  l e a d s  to a z e ro  va lue  of q.  

We now suppose  that  the d i f fus ion  coe f f i c i en t s  in 
(32) a r e  cont inuous  s c a l a r  func t ions  of the  c o n c e n t r a -  
t ion g r a d i e n t  and m a y  be  r e p r e s e n t e d  in the f o r m  

L,,~ = L.I = f. (x,). L,~ = L ~  = f~ (&), 

w h e r e  

L,~ = i~ (x,), (35) 

x, = grad Cp (36) 

F r o m  (30)- (33)  and (35) we obta in  

o" = Lu. x~& + 2f.  (&) xm xu -{- 2LuwFr x. + 

+ 2fw (xl) X.n F~ +fm (Xl) Xm Xm + L~,wF~ Fp (37) 

Now, with f ixed  va lues  of 2 m and F f  and f r e e  Xu, a s  
a r e s u l t  of evolu t ion  of the s y s t e m ,  we obta in  

do" = 2 {L ~ , x  u -}- fu(&)Xm + Lu~,-F~} dx u n u 

-l- { 2 • df, (.~) + 2Ff dfw (&) -t- x,, dfm (&) ] x m = 0, (38) 

which,  t o g e t h e r  with Eqs .  (31) and (35) g ives  

2 qd&-b{2-~udf,  ( xO+2f )d fw (~)  +xmdS~(&)}  x m = 0. (39) 

F r o m  (16), (17), (34) and (36) we m a y  w r i t e  

( ) x- = ( h _ h D x .  + v , - - v 2  ? I +  1 0 ( ~ , - - - ~ ) x .  (40) 
T OC~ 

and, s i n c e  the va lues  of 2 m and F f  a r e  f ixed,  

( h 2 _ h D d x  u .~ I O ( ~ - - t ~ )  dx~ = 0 .  (41) 
T OC I 
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Therefore the differential off(~l) is not equal to 
zero, and the quantity taken into the parentheses 
(using which we obtain the sca lar  product Xm in (39)) 
is not zero. Thus, the quantity ~ in (39) is not zero.  
Since the quantity ~ for the stationary state examined 
must  equal zero, Eq. (39) cannot be true. Thus we 
see that (35) is incorrect ,  and the diffusion coefficients 
cannot be continuous functions of the concentration 
gradients. Therefore,  these coefficients are  constants 
(possibly even zero) at the final values of the concen- 
tration gradients, and they can go to zero discretely 
at zero values of the concentration gradients. Togeth- 
er  with Eqs. (15), (28) and (29), this conclusion may 
be written as follows: 

Lpp>0, Lp~=Lup<>0, Lp~=L~p~0,  (42) 

if grad Cp ~0  (p = 1,2 ,3  . . . . .  n -  1)- 

Lpp = Lpu ~ L,,~ = Lv~ = L~p = O, (43) 

f f g r a d C p = O ( p = l , 2 , 3  . . . . .  n -  1); 

Lp~ = Lip _<> O, (44) 

if g r a d C p ~ O a n d g r a d C  i ~ O ( i a n d p = l , 2 , 3  . . . . .  
n -  l a n d i ~ p )  
and 

Lpi = L~p = O, (45) 

if g r a d C p = O o r g r a d C i = O ( i a n d p = l , 2 , 3  . . . . .  
n -  l a n d i ~ p ) .  

The equations given above describe the charac ter -  
istics of the diffusion coefficients and their depen- 
dence on the concentration gradients. 

If the system consists only of  a fluid (i. e . ,  the 
porosity r is equal to 1), then there is no friction 
force F f ,  and it therefore does not enter into the en- 

J 

tropy production Eqs. (8) and (9). In other words, 
the motion of the center of mass of the fluid will be 
reversible.  The result  of this is that there will be 
no friction force te rms  in (10), (11), and (12). Ob- 
viously, the Onsager coefficients Lww, Lwu, L w i , . . .  
drop out, and there will be no differences between 
the volumetric and the internal properties.  Equation 
(17) also will not be valid. Taking this into account, 
it may easily be shown that the nature of the diffusion 
coefficients in such a. system also depends on the equa- 
tions presented. 

Sphere of application. We will examine a stationary 
state of the f i rs t  order ,  in which Ff (or, in accordance 
with (17), the pressure  gradient) is fixed at a constant 
value, while all the other forces remain free.  As the 
author has shown [4], this stationary state may be 
used to calculate the Joule-Thomson coefficient. In 
this case the diffusion fluxes and the total heat flux 
are  equal to zero, and Eq. (21) is applicable. There-  
fore,  according to (22) or  (43) and (45), all the dif- 
fusion coefficients are  zero. Thus, the fluid behaves 
like a one-component fluid. From (10) and (17), we 
obtain 

------- Lu. grad T rL,~ grad p' = 0, (46) 
7 TM 

whence we may write 

rT ~ Lu~ [ - . . . . .  Luu=~- -~ -~n ,~q ,m~ ,m ,  - ~,-- . mn-~ = O. (47) 

Equation (47) in fact determines the Joule-Thomson 
coefficient. It should be noted that Eq. (53) in the 
authorVs previous art icle [4] requires alteration in 
view of the validity of the above equations. 

If the system consists only of a fluid, the pressure  
gradient will not enter into (46). In such a system, 
where only the pressure  gradient is constant, we have 
a stationary state of the f i rs t  order,  where the flow 
of the fluid is isothermal,  and there is no diffusion, 
i. e . ,  we have flow of a one-component fluid. It is 
evident that in this case no Joule-Thomson effect will 
be observed. 

It should be noted that in aerodynamics we assume 
a condition leading to absence of diffusion and to a 
zero concentration gradient, while the air  is regarded 
as a one-component fluid, Now we may easily show 
that in fact  this condition is satisfied in all problems 
relating to the flow of air,  when res t ra ints  are  im- 
posed on the pressure  and the temperature gradients, 
or  only on the pressure  gradients, but not on the con- 
centration gradients (or on the gradients of chemical 
potential). The evolution of the stationary states cor-  
responding to these restraints ,  leads to zero diffusion 
flows and zero concentration gradients. If we f i rs t  
take the zero concentration gradients (as in the case 
of problems relating to flow of air) f rom (43) and (45), 
the diffusion fluxes at f i rs t  will also be zero. In this 
case the above-mentioned stationary states were de- 
veloped at the very beginning, and therefore the fluid 
behaves as a one-component fluid, independently of 
whether the flow is or  is not steady. 

We will now examine the possibility of a given sta- 
t ionary state being absent. For  example, when the 
p ressure  and temperature gradients have been fixed 
[Eqs. (18) and (19)], we have a stationary state in 
which the fluid flows like a one-component fluid [Eqs. 
(20) and (21)]. This picture of the flow is the case of 
the ordinary momentum transfer  between the compo- 
nents of the fluid. If under such res t ra ints  it is ob- 
served that the motion Vi of any component i differs 
f rom the motion V of the center of mass ,  this co r re -  
sponds to the case when momentum transfer  is im- 
possible between the i-th component and the res t  of 
the fluid. In this case we do not get the above-men- 
tioned stationary state, and therefore Eqs. (9)-(12) 
which describe it, will not pertain. In this case it 
will be necessary  to construct  another model of the 
thermodynamic system by taking into account the total 
derivatives with respect  to time [Eqs. (5) and (6)] of 
the properties of component i along its velocity V i, 
and the total derivatives with respect  to time of the 
propert ies  of the rest  of the fluid phase along its mo- 
tion. Thus, the fluid part  of the system (in the case 
of a mixture, the solid-fluid) will be considered as a 
mixture of two nfluids," i . e . ,  the "fluid" i and the 
remaining ~fluid." This al ters  the character  of the 
entropy production equation and of the phenomenolog- 
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ical  equations. This kind of model was used by P r i -  
gogine and Mazur  [5, 6] in analyzing the behavior  of 
liquid helium. As these  authors  showed, the method 
works if there  is a r e s i s t ance  to the t r ans fe r  of mo-  
mentum between the components of the fluid. 

In an exper imenta l  appara tus  the p r e s s u r e  and tem-  
pe ra tu re  gradients  may eas i ly  be control led.  Therefore  
the so -ca l l ed  s ta t ionary  s tate  may eas i ly  be a l t e red  
and used as a c r i t e r ion  of the val idi ty  of the given an- 
a lys i s .  

In accordance  with what has been d iscussed ,  the 
solid and fluid phases  in the invest igat ion mentioned 
were examined separa te ly ,  and not as a single enti ty.  

As a resul t ,  the total  der iva t ives  with r e spe c t  to 
t ime [Eqs. (5) and (6)] of the p rope r t i e s  of the liquid 
phase (or of any of i ts components} were  examined 
along V, while the der iva t ives  of the solid phase were 
examined along its velocity,  which was zero in our  
case .  

SUMMARY 

The cha rac t e r  of the diffusion coefficients is  de-  
t e rmined  completely by Eqs. (42)-(45). These equa- 
t ions a r e  valid for  a sys tem which may be a mix ture  
of a sol id and a fluid, or  a fluid only. With the aid 
of these equations the conditions may eas i ly  be dem-  
ons t ra ted  under which a mult icomponent fluid behaves 
as  a one-component  fluid. In the l imi ts  of the ana lys i s  

given, a s ta t ionary  s ta te  with fixed p r e s s u r e  and tem-  
pe ra tu re  gradients  should lead to a p ic ture  of the flow, 
when a l l  the components of the fluid move with the 
same  veloci ty  and have zero  concentrat ion grad ien ts .  
Therefore  the exis tence  of such a s ta t ionary  s ta te  
may  be used as a c r i t e r ion  of the l imi t s  of the val idi ty  
of the p r e s e n t  invest igat ion.  The t r ea tmen t  p resen ted  
is val id only for  the problems  examined within the 
f r amework  of the p re sen t  work. 
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