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An analysis is presented of the process of diffusion of a multicompo-
nent fluid through a solid porous medium, It is shown that there are
conditions in which the diffusion fluxes vanish, and for which the
multicomponent system may be replaced by a one-component sys-
tem in aerodynamic problems,

Analysis of the flow of a single-phase multicom-
ponent fluid with the aid of the thermodynamics of
irreversible processes shows that diffusion, which
is an irreversible process, is observed in the stream.
Diffusion causes the production of entropy in the sys-
tem, which may be a fluid only, or a mixture of a
solid and a fluid, as in the case of flow of a fluid
through solid porous media. The first kind of system
has been examined in detail by De Groot [1], and the
second—Dby the author, in [2-4]. The author also
showed that this kind of analysis may easily be mod-
ified for a system consisting of only one fluid. There-
fore, in the present article we will examine the flow
of a multicomponent, single-phase fluid through a
porous medium, and show that the concentration gra-
dients in the fluid phase have an influence on the na-
ture of the diffusion coefficients. With this objective
we will make use of material from a previous article
of the author's [4]. The reader should refer to it in
order to become familiar with the explanation of the
thermodynamic system and the derivation of the equa-
tions of continuity, momentum, energy, entropy, and
entropy increase. We will employ the same notation
in this article.

Thermodynamic system and entropy production. It
is assumed that the thermodynamic system consists
of a solid-fluid mixture, and that both phases are
found at all points throughout the entire porous me-
dium. The fluid phase may consist of n components.
Its volume density, p, and the velocity of the center

of mass, V, are determined as follows:
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where pj and Vk are the volume density and the veloc-
ity, respectively, of component k. The diffusion my
of component k is determined from the expression

my = p (Ve — V). (2
From (1) and (2) we obtain
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The mass concentration of component k is deter-
mined as

Cy = pp/p. (4)

For any extensive property of the fluid phase (or of
any of its components), such as entropy, we may
write
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where s is the specific entropy of the fluid phase. The
total derivatives with respect to time of the properties
of the parameters of the fluid and solid phases are
calculated along their respective velocities, and there-
fore, for the fluid phase, or any of its components,
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Since the solid phase is stationary, the total and local

derivatives with respect to time will be identical in

this case. Assuming that there are no chemical re-

actions, we may obtain from the foregoing equations
e, _ 06,
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The author of [4] has shown that in unit volume of the
system, the rate of production of entropy is
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where T is the temperature, p is the volumetric pres-
sure, 5ij is the Krone(iker delta, Fij is a component
of the volume stress, q is the total heat flux per unit
area of the system, uj is the chemical potential of
component k, and Fy is the friction force per unitvol-
ume of the system. Besides i and j, we may use x, y,
z, and xx = X, xysyandxzsz.

Irreversible changes take place in the system due
to viscous flow, heat conduction, diffusion, and mo-
tion of the center of mass of the fluid phase in the
presence of a friction force, The first term is the
scalar product of two second-order tensors, while
the last three terms are scalar products of first-
order tensors. As a result there is no connection be-
tween the first and the other three terms. But there
may be, and it is assumed that there is, a connection



106

between the last three terms. If ¢" is the entropy pro-
duction per unit volume of the system due to these
three terms, we obtain, from (3) and (8),

i=n—1 —
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o =—4q T2 —Zlmlgrad (—TL)—FFP (9)
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where mj and pj are, respectively, the diffusion and
chemical potential of component i.

Phenomenological equations. From (9) we may
write
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where E'p is the diffusion of component p (p=1,2,3,
cosn— 1),

The equations given above are called phenomeno-
logical equations, since they require experimental
verification. In these equations the heat flux, the dif-
fusion, and the motion of the center of mass of the
fluid phase are regarded as "fluxes." It is assumed
that each of these fluxes is linearly proportional to
the gradient of temperature, the gradient of chemical
potential, and to the friction force, which may be
called the "forces." The flux and the force in each
scalar product of (9) are conjugate quantities; for
example, the heat flux is the conjugate of the tem-
perature gradient. The connecting coefficients are
known as the Onsager coefficients, being considered
as constant, and not functions of the forces. H this
is valid, we have

Lyy=Lyw Lyy=L,, L,;=L,,, etc. (13)

Expressions (13) are known as the Onsager recip-
rocal relations, and indicate how the various phe-
nomena are related., These relations will be used
widely in this analysis. According to the second law
of thermodynamics

>0 and o’ > 0. (14)

It may therefore be shown that
Liw>0, Ly>0, L,,>0, etc
LywLow— (Luw) >0,
Ly Ly —(L,)2>0, ete. (15)

Using the Gibbs-Duhem equation, we may also
show that
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where hj and V; are, respectively, the particular spe-
cific values of the enthalpy and the internal volume of
component i, while p' is the internal pressure of the
fluid phase.

The author has shown [3, 4] that, for moderate val-
ues of Reynolds nummber and negligibly small gravita-
tion effects,

F;=rgradp’ = grad p, (17)

where r is the porosity of the system, and p is the
volumetric pressure of the fluid phase.

Stationary states. The concept of stationary states
was explained in detail by de Groot [1], and the author
used it in his previous papers [3,4]. It is based on the

'hypothesis that entropy production in the system always

attains the least value consistent with the limits im~
posed upon it. By examining Eqs. (9)—(12), we see
that o" may be written as a function of (n + 1) indepen—
dent forces or variables. Any of these forces or vari-
ables may be "fixed" at a constant value, or left "free."
If all the forces are free, there is no restraint on the
system, and the result is a zero value of ¢", because
of evolution of the system. Such a state is known as a
stationary state of zero order. If we fix one variable
and leave the remaining n free, the quantity ¢" attains
its least value, commensurate with this restraint, and
we obtain as a result a stationary state of the first
order. Thus, the order is determined by the number
of fixed independent variables. For a given order of
stationary state, the condition of least value of the
quantity o", together with the use of the Onsager re-
ciprocal relations, leads to disappearance of the
fluxes that are conjugate to the free forces (or vari-
ables). For example, in a stationary state of order
one, in which the temperature gradient is fixed, the
diffusion flows and the motion of the center of mass

of the fluid phase vanish,

It should be noted here that once the validity of the
entropy production equation and of the phenomenolog-
ical equations is assumed, any stationary state de-
scribed by these equations is permissible.

Characteristics of the diffusion coefficients, The
Onsager coefficients in the diffusion Eq. (11) may be
called diffusion coefficients. The nature of these co-
efficients will be examined from the viewpoint of the
concept of stationary states, We will examine a sta-
tionary state of order two in which

grad T/T?% = const, (18)
F; = const (19)

and grad [(uj — pn)/T] for all n — 1 components re-
mains free. Evolution of this stationary state gives

m,=0 (p=1,2 3, ..,0—=1). (20)

It may be seen from (17) and (19), that, by assign-
ing constant Fy , we obtain a constant pressure gra-
dient. Since the velocity of the center of mass of the
fluid phase is not zero, from (7) and (20) we obtain

gradC, =0 (i=1,23,..,n—1), 21
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and so the fluid behaves like a one-component fluid.
If we substitute (16), (17), (20) and (21) into (11), we
obtain (n — 1) diffusion equations, determining the
ratio of the pressure and temperature gradients,
which is impossible, because of the initial conditions
(18) and (19). Therefore, all the diffusion coefficients
in the (n — 1) diffusion equations must be zero. Here
it should be stressed that (21) is the key equation
leading to this conclusion. I, for example, grad Cj =
#0(i=1,2,3,...,n— 1), then the values of all the
diffusion coefficients could be determined from the

(n — 1) diffusion equations. Therefore, when (21) is
valid, we have

Lj,=L,;=0, Liw = Lwi =0, Lip = Lpi =0, (22)

wherei=1, 2,3, ..., n—1andp=1, 2, 5, ...,
n-—1.

In order to determine in greater detail the depen-
dence of the diffusion coefficients on the concentra-
tion gradients, we will examine a stationary state of
n-th order, in which

grad T/T? = const,

1"'} = const,

grad(ﬂ"—%'ﬂ):const (i=234,..,n—1) (23)

and grad (4i — un)/ T is left free. In this case there
is no diffusion of the first component. From (11) we
have

i=n—

1
-y Lligrad(ﬂ"——;—’”i)“Llﬁf:O, (24)
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and Egs. (17) and (10) show that the value of the pres-
sure gradient is fixed. Since V is not equal to zero,
we obtain, from (7) and (24),

gradC; = 0. (25)

It may be seen from (16)—(19) that (23) gives us
{n — 2) conditions for determining the concentration
gradients for the (rn — 2) components of the fluid phase.
Thus, Egs. (18), (19), (23) and (25) determine the val~
ues of all the forces in (24). Since these values may
be arbitrary, Eq. (24) will be valid only when all the
coefficients appearing in it are zero. We again note
that (25) is the key equation leading to this conclusion.
If grad C; were not zero, its value would be deter-
mined from (24) in terms of the diffusion coefficients.
Thus, when grad C; equals zero,

Llu = Lul =0, Llw = Lwl =0,
Ly=L;=0(@=123, ..,n=1). (26)

In a similar way it may be shown that when grad C,
equals zero

Loy =Ly =0, Lyy=Ly=0,
Ly=Lp=0(=123 .,1—1. (27)
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Generalizing Egs. (22), (26) and (27), we obtain

Lpy=L,, =0, Lyw=0L,,=0, L,, =0, (28)

if grad Cp = 0 (p may have any of the following values:
1,2,3,...,n— 1), and

Ly=L,=0, (29)

if grad Cp or grad Ci equals zero (i and p equal to any
of the values 1,2,3,...,n— 1and i #p).

We will now examine the case when the diffusion
coefficients are continuous functions of the concentra-
tion gradients. To simplify the analysis, we assume
that the fluid phase consists of two components. Then
Eqgs. (9)-(12) may be rewritten in the following form:

o = —qx,—myx, — +Fp, (30)

9= —LuXy— Lyy Ty — Ly Fy, (31)
My == ~ Ly, X, — Lyy X — Ly F, (32)
VIT = — Ly %y — Loy Xo— Lo Fpo (33)

where

%, = grad T . %, =grad (lﬂ%"‘i) . (34)

In this case a stationary state of second order,
where the values of X, and F- are fixed, while the
value of X, remains free, leads to a zero value of q.

We now suppose that the diffusion coefficients in
{82) are continuous scalar functions of the concentra-
tion gradient and may be represented in the form

Ly, =Ly= fa (E)y Liy= Loy =[o (;1)7
Ly = f (%), (35)
where
X; = grad C,. (36)
From (30)—(33) and (35) we obtain
0" = L,y X, %, 4+ 2f, (6} X %, + 2L, Fr x, +
4 2fy (%) Xy Fp o (1) Xy X + Lo Fr Fre (37)

Now, with fixed values of Xy, and Fy and free Xy, as
a result of evolution of the system, we obtain

40" =2 Ly, %, + o (%) X + LowF1} 42, +
+ (2%, df, (1) + 2Fydfy, (5) + %, df (02) | % = 0, (38)
which, together with Egs. (31) and (35) gives
2 qdi,+(2 %, df, () +2 F; dfy (%) + X df (%)} % = 0. (39)

From (16), (17), (34) and (36) we may write

) i e
Y = (e — ) 5, ( U JE b 2t 5 )

and, since the values of Xy, and ff are fixed,

— 1 9w, — _
(hy—hy)dx, + — —(*%#‘idxl =0. (41)
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Therefore the differential of f(X;) is not equal to
zero, and the quantity taken into the parentheses
(using which we obtain the scalar product Xy, in (39))
is not zero. Thus, the quantity q in (39) is not zero.
Since the quantity q for the stationary state examined
must equal zero, Eq. (39) cannot be true. Thus we
see that (35) is incorrect, and the diffusion coefficients
cannot be continuous functions of the concentration
gradients. Therefore, these coefficients are constants
(possibly even zero) at the final values of the concen-
tration gradients, and they can go to zero discretely
at zero values of the concentration gradients. Togeth-
er with Eqs. (15), (28) and (29), this conclusion may
be written as follows:

Lpp>0, Lpy=Ly,y20, Ly=1,,20, (42)
if grad Cp #0(p=1,2,3,....n— 1)t
Lyp=Lpy=Ly=Lyy=L,, =0, (43)
ifgrad‘Cp=0(p=1,2,3,...,n— 1);
Ly=L,=0, (44)

if grad Cp =0 and grad Cj #0 (iand p=1,2,3,...,
n—1andi#p)
and

Ly=L,=0, (45)
if grad Cp=00r grad Cj =0 (i and p=1,2,3,...,
n— 1andi#p).

The equations given above desecribe the character-
istics of the diffusion coefficients and their depen-
dence on the concentration gradients.

If the system consists only of a fluid (i.e., the
porosity r is equal to 1), then there is no friction
force Ff’ and it therefore does not enter into the en-
tropy production Egs. (8) and (9). In other words,
the motion of the center of mass of the fluid will be
reversible. The result of this is that there will be
no friction force terms in (10), (11), and (12). Ob-
viously, the Onsager coefficients Lyww, Lwy, Lwis...
drop out, and there will be no differences between
the volumetric and the internal properties. Equation
(17) also will not be valid. Taking this into account,
it may easily be shown that the nature of the diffusion
coefficients in such a system also depends on the equa-
tions presented. \

Sphere of application. We will examine a stationary
state of the first order, in which ¥ (or, in accordance
with (17), the pressure gradient) is fixed at a constant
value, while all the other forces remain free. As the
author has shown [4], this stationary state may be
used to calculate the Joule- Thomson coefficient. In
this case the diffusion fluxes and the total heat flux
are equal to zero, and Eq. (21) is applicable. There-
fore, according to (22) or (43) and (45), all the dif-
fusion coefficients are zero. Thus, the fluid behaves
like a one-component fluid. From (10) and (17), we
obtain

gl'adT ——-rL,,wgradp'=0, (46)

q—=—Luu
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whence we may write

72 Lo _ ("_T,)z,, Ty Tigs e Mgy = 0. (47)
Ly ap

Equation (47) in fact determines the Joule- Thomson
coefficient. It should be noted that Eq. (53) in the
author's previous article [4] requires alteration in
view of the validity of the above equations.

If the system consists only of a fluid, the pressure
gradient will not enter into (46). In such a system,
where only the pressure gradient is constant, we have
a stationary state of the first order, where the flow
of the fluid is isothermal, and there is no diffusion,
i.e., we have flow of a one-component fluid, It is
evident that in this case no Joule-Thomson effect will
be observed.

It should be noted that in aerodynamics we assume
a condition leading to absence of diffusion and to a
zero concentration gradient, while the air is regarded
as a one~component fluid. Now we may easily show
that in fact this condition is satisfied in all problems
relating to the flow of air, when restraints are im-
posed on the pressure and the temperature gradients,
or only on the pressure gradients, but not on the con-
centration gradients (or on the gradients of chemical
potential). The evolution of the stationary states cor-
responding to these restraints, leads to zero diffusion
flows and zero concentration gradients, If we first
take the zero concentration gradients (as in the case
of problems relating to flow of air) from (43) and (45),
the diffusion fluxes at first will also be zero. In this
case the above-mentioned stationary states were de-
veloped at the very beginning, and therefore the fluid
behaves as a one-component fluid, independently of
whether the flow is or is not steady.

We will now examine the possibility of a given sta-
tionary state being absent, For example, when the
pressure and temperature gradients have been fixed
[Egs. (18) and (19)], we have a stationary state in
which the fluid flows like a one-component fluid [Egs.
(20) and (21)]. This picture of the flow is the case of
the ordinary momentum transfer between the compo-
nents of the fluid. If under such restraints it is ob-
served that the motion V; of any component i differs
from the motion V of the center of mass, this corre-
sponds to the case when momentum transfer is im-
possible between the i-th component and the rest of
the fluid. In this case we do not get the above-men-
tioned stationary state, and therefore Eqgs. (9)—(12)
which describe it, will not pertain. In this case it
will be necessary to construct another model of the
thermodynamic system by taking into account the total
derivatives with respect to time [Eqgs. (5) and (6)] of
the properties of component i along its velocity Vi,
and the total derivatives with respect to time of the
properties of the rest of the fluid phase along its mo-
tion. Thus, the fluid part of the system (in the case
of a mixture, the solid-fluid) will be considered as a
mixture of two "fluids," i.e., the "fluid" i and the
remaining "fluid." This alters the character of the
entropy production equation and of the phenomenolog-
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ical equations. This kind of model was used by Pri-
gogine and Mazur {5, 6] in analyzing the behavior of
liquid helium. As these authors showed, the method
works if there is a resistance to the transfer of mo-
mentum between the components of the fluid.

In an experimental apparatus the pressure and tem-
perature gradients may easily be controlled. Therefore
the so-called stationary state may easily be altered
and used as a criterion of the validity of the given an-
alysis.

In accordance with what has been discussed, the
solid and fluid phases in the investigation mentioned
were examined separately, and not as a single entity.

As a result, the total derivatives with respect to
time [Eqgs. (5) and (6)] of the properties of the liquid
phase (or of any of its components) were examined
along V, while the derivatives of the solid phase were
examined along its velocity, which was zero in our
case,

SUMMARY

The character of the diffusion coefficients is de-
termined completely by Eqgs. (42)~(45). These equa-
tions are valid for a system which may be a mixture
of a solid and a fluid, or a fluid only. With the aid
of these equations the conditions may easily be dem-
onstrated under which a multicomponent fluid behaves
as a one-component fluid, In the limits of the analysis
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given, a stationary state with fixed pressure and tem-
perature gradients should lead to a picture of the flow,
when all the components of the fluid move with the
same velocity and have zero concentration gradients.
Therefore the existence of such a stationary state
may be used as a criterion of the limits of the validity
of the present investigation. The treatment presented
is valid only for the problems examined within the
framework of the present work,
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